The Equilibrium Law

States "If the concentrations of all the substances present at equilibrium are raised to the power of the number of moles they appear in the equation, the product of the concentrations of the products divided by the product of the concentrations of the reactants is a constant, provided the temperature remains constant" ... WOW!

Calculating Equilibrium Constants

Types $\quad \mathrm{K}_{\mathrm{c}}$ equilibrium values are concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$
K_{p} equilibrium values are partial pressures - system at constant temperature The partial pressure expression can be used for reactions involving gases

Calculating K_{c} for a reaction of the form $\mathrm{a} \mathbf{A}+\mathrm{b} \mathbf{B} \rightleftharpoons \mathrm{c} \mathbf{C}+\mathrm{d} \mathbf{D}$
then (at constant temperature)

$$
\frac{[C]^{c} \cdot[D]^{d}}{[A]^{a} \cdot[B]^{b}}=\text { a constant, }\left(K_{c}\right)
$$

[] denotes the equilibrium concentration in $\mathrm{mol} \mathrm{dm}^{-3}$
$\mathbf{K}_{\mathbf{c}}$ is known as the Equilibrium Constant

Value of K_{c}

- AFFECTED by
- NOT AFFECTED by
a change of temperature
a change in concentrations a change of pressure adding a catalyst
Q. 1 What happens to the theoretical yield of a reaction if...
- K_{c} increases
- K_{c} decreases ?
Q. 2 What happens to the value of K_{c} if ...
- the temperature is increased in an exothermic reaction
- the temperature is decreased in an exothermic reaction
- the temperature is increased in an endothermic reaction
- the temperature is decreased in an endothermic reaction
Q. 3 Write expressions for the equilibrium constant, K_{c} of the following reactions.

Remember, equilibrium constants can have units.
$\mathrm{Fe}^{3+}{ }_{(a q)}+\mathrm{NCS}^{-}{ }_{(a q)} \rightleftharpoons \mathrm{FeNCS}^{2+}{ }_{(a q)} \quad \mathbf{K}_{\mathbf{c}}=$
$\mathrm{NH}_{4} \mathrm{OH}(a q) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad \mathbf{K}_{\mathbf{c}}=$
$2 \mathrm{Fe}^{3+}(a q)+2{I^{-}(a q)}$ ($2 \mathrm{Fe}^{2+}(a q)+\mathrm{I}_{2}(a q) \quad \mathbf{K}_{\mathbf{c}}=$

Calculating

value of K_{c}

- construct the balanced equation, including state symbols (aq), (g) etc.
- determine the number of moles of each species at equilibrium
- divide moles by volume $\left(\mathrm{dm}^{3}\right)$ to get the equilibrium concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$ (If no volume is quoted, use a V; it will probably cancel out)
- from the equation constructed in the first step, write out an expression for K_{c}.
- substitute values from third step and calculate the value of K_{c} with any units

Example 1 Ethanoic acid (1 mol) reacts with ethanol (1 mol) at 298K. When equilibrium is reached, two thirds of the acid has reacted. Calculate the value of K_{c}.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(I)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(I)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(I)}+\mathrm{H}_{2} \mathrm{O}_{(I)}
$$

initial moles	1	1	0	0
equilibrium moles	1-2/3	1-2/3	2/3	2/3
	If $2 / 3 \mathrm{~mol}$ of the acid has reacted then take the value away from the initial number of moles of acid	If $2 / 3 \mathrm{~mol}$ of the acid has reacted, then $2 / 3 \mathrm{~mol}$ of ethanol will also have reacted. Take $2 / 3 \mathrm{~mol}$ away from the original.	According to the equation, for every mol of acid that reacts you make 1 mol of ester and 1 mol of water. Therefore, if $2 / 3 \mathrm{~mol}$ of acid has reacted, $2 / 3 \mathrm{~mol}$ of ester and $2 / 3 \mathrm{~mol}$ of water are produced.	
equilibrium concs.	$1 / 3 / V$	$1 / 3 / V$	2/3/V	2/3/V
	$\boldsymbol{V}=$ volume $\left(\mathrm{dm}^{3}\right)$ of the equilibrium mixture			
$K_{c}=$	$\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]=$		2/3/V. $2 / 3 / \mathrm{V}$	4
	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right.$	$\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$	$1 / 3 / V \cdot 1 / 3 / V$	

Example 2 Consider the reaction $P+2 Q \rightleftharpoons R+S \quad$ (all are aqueous)
1 mol of P and 1 mol of Q are mixed. Once equilibrium has been achieved, 0.6 mol of P are present. How many moles of Q, R and S are present at equilibrium ?

Explanation • if 0.6 moles of P remain of the original 1 mole, 0.4 moles have reacted

- the equation states that 2 moles of Q react with every 1 mole of P
- this means that $0.8(2 \times 0.4)$ moles of Q have reacted, leaving 0.2 moles
- one mole of R and S are produced from every mole of P that reacts
- this means 0.4 moles of R and 0.4 moles of S are present at equilibrium
Q. 4 The questions refer to the equilibrium $A+B \rightleftharpoons C+D$ (all aqueous)
(a) If the original number of moles of A and B are both 1 and 0.4 moles of A are present at equilibrium, how many moles of B, C and D are present?

What will be the value of K_{c} ?
(b) At a higher temperature, the original moles of A and B were 2 and 3 respectively. If 1 mole of A is present at equilibrium, how many moles of B, C and D are present? What else does this tell you about the reaction?

Calculations involving Gases

Method - carried out in a similar way to those involving concentrations

- one has the choice of using K_{c} or K_{p} for the equilibrium constant
- when using K_{p} only take into account gaseous species for the expression
- quotes the partial pressure of the gas in the equilibrium mixture
- pressure is usually quoted in Nm^{-2} or Pa - (atmospheres are sometimes used)
- the units of the constant K_{p} depend on the stoichiometry of the reaction

total pressure	$=\quad$ sum of the partial pressures
partial pressure	$=\quad$ total pressure \times mole fraction
mole fraction	$=\quad$ number of moles of a substance

Calculating \mathbf{K}_{p} for a reaction of the form $a \mathbf{A}(\mathrm{~g})+\mathrm{b} \mathbf{B}(\mathrm{g}) \rightleftharpoons \mathbf{c} \mathbf{C}(\mathrm{g})$
then (at constant temperature)

$$
\frac{P \mathbf{C}^{\mathrm{c}}}{P \mathrm{~A}^{\mathrm{a}} \times P \mathrm{~B}^{\mathrm{b}}}=\text { a constant, }\left(\mathrm{K}_{\mathrm{p}}\right)
$$

P denotes the partial pressure of a gaseous component at equilibrium
\mathbf{K}_{p} is the Equilibrium Constant in terms of partial pressures

Example $\quad \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{PNO}_{2}\right)^{2}}{\left(\mathrm{PN}_{2} \mathrm{O}_{4}\right)} \quad$ (units of pressure)
Q. 5 Write expressions for the equilibrium constant, K_{p} of the following reactions. Remember, equilibrium constants can have units. (assume the pressure is in MPa)

$$
N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 N H_{3}(g) \quad \mathbf{K}_{\mathrm{p}}=
$$

$$
P C l_{5}(s) \rightleftharpoons P C l_{3}(l)+C l_{2}(g) \quad \mathbf{K}_{\mathrm{p}}=
$$

$$
\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \quad \mathbf{K}_{\mathrm{p}}=
$$

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathbf{K}_{\mathrm{p}}=
$$

Example 1 A mixture of 16 g of O_{2} and 42 g of N_{2}, exerts a total pressure of $20000 \mathrm{Nm}^{-2}$. What is the partial pressure of each gas ?

```
moles of O2 = mass/molarmass = 16g/32g = 0.5 mol
moles of N}\mp@subsup{N}{2}{}=\mathrm{ mass /molar mass = 42g/28g = 1.5 mol Total = 2 mol
llol}\begin{array}{ll}{\mathrm{ mole fraction of O2}}&{=0.5/2=0.25}\\{\mathrm{ mole fraction of N}\mp@subsup{N}{2}{}=1.5/2=0.75 sum of mole fractions =1}
partial pressure of O2 = mole fraction x total pressure
    = 0.25 x 20000 Nm-2 = 5000 Nm-2
partial pressure of N}\mp@subsup{N}{2}{}=\mathrm{ mole fraction x total pressure
    = 0.75 x 20000 Nm-2 = 15000 Nm-2
```

Example 2 Nitrogen (1 mol) and hydrogen (3 mol) react at constant temperature at a pressure of 1 MPa . At equilibrium, half the nitrogen has reacted. Calculate K_{p}.

	$\mathrm{N}_{2}(g)$	+	$3 \mathrm{H}_{2(g)}$	\rightleftharpoons
initial moles	1	3		$2 \mathrm{NH}_{3}(g)$
	1		0	

at equilibrium
mole fractions
partial pressures
$1-0.5=0.5 \mathrm{~mol}$
$0.5 / 3$
$(0.5 / 3) \times 1 \mathrm{MPa}$.
$3-1.5=1.5 \mathrm{~mol}$
$1.5 / 3$
$1.5 / 3 \times 1 \mathrm{MPa}$.
$2 \times 0.5=1 \mathrm{~mol}$
$1 / 3$
$1 / 3 \times 1$ MPa.
applying the equilibrium law

$$
\begin{aligned}
& K_{p}=\frac{\left(P \mathrm{NH}_{3}\right)^{2}}{\left(P \mathrm{~N}_{2}\right) \cdot\left(P \mathrm{H}_{2}\right)^{3}}=\frac{1 / 6 \times 1 / 3}{\frac{1 / 3}{1 / 2 \times 1 / 2 \times 1 / 2}} \mathrm{MPa}^{-2} \\
& \text { therefore } \quad \mathrm{K}_{\mathrm{p}}=5.33 \mathrm{MPa}^{-2}
\end{aligned}
$$

Example $3 \quad 0.102 \mathrm{~g}$ of solid ammonium sulphide is heated in a closed container at $100^{\circ} \mathrm{C}$ until equilibrium is reached at a pressure of 0.1 MPa . It is found that 75% of the ammonium sulphide has dissociated. Calculate the equilibrium constant K_{p} for the reaction at $100^{\circ} \mathrm{C}$.

applying the equilibrium law (the partial pressure of a solid is more or less constant so is ignored)
$K_{p}=P \mathrm{NH}_{3} \times P H_{2} \mathrm{~S}=0.05 \mathrm{MPa} \times 0.05 \mathrm{MPa}$

$$
\mathrm{K}_{\mathrm{p}}=2.5 \times 10^{-3} \mathrm{MPa}^{2}
$$

